Kombinovaný plynový zákon

Kombinovaný plynový zákon je vzorec o ideálnychplynoch. Vznikol spojením troch rôznych zákonov o tlaku, objeme a teplote plynu. Vysvetľujú, čo sa stane s dvoma hodnotami tohto plynu, zatiaľ čo tretia zostáva rovnaká. Tieto tri zákony sú:

  • Charlesov zákon, ktorý hovorí, že objem a teplota sú navzájom priamo úmerné, ak tlak zostáva rovnaký.
  • Boyleov zákon hovorí, že tlak a objem sú pri rovnakej teplote navzájom nepriamo úmerné.
  • Gay-Lussacov zákon hovorí, že teplota a tlak sú priamo úmerné, ak objem zostáva rovnaký.

Kombinovaný plynový zákon ukazuje, ako tieto tri veličiny navzájom súvisia. Hovorí, že:

Vzorec kombinovaného plynového zákona je:

P V T = k {\displaystyle \qquad {\frac {PV}{T}}=k} {\displaystyle \qquad {\frac {PV}{T}}=k}

kde:

P je tlak

V je objem

T je teplota meraná v kelvinoch

k je konštanta (v jednotkách energia delená teplotou).

Ak chcete porovnať ten istý plyn s dvoma z týchto prípadov, zákon možno zapísať takto:

P 1 V 1 T 1 = P 2 V 2 T 2 {\displaystyle \qquad {\frac {P_{1}V_{1}}{T_{1}}}={\frac {P_{2}V_{2}}{T_{2}}}} {\displaystyle \qquad {\frac {P_{1}V_{1}}{T_{1}}}={\frac {P_{2}V_{2}}{T_{2}}}}

Pridaním Avogadrovho zákona ku kombinovanému plynovému zákonu dostaneme tzv. zákon ideálneho plynu.

Odvodenie zo zákonov plynu

Boyleov zákon hovorí, že súčin tlaku a objemu je konštantný:

P V = k 1 ( 1 ) {\displaystyle PV=k_{1}\qquad (1)} {\displaystyle PV=k_{1}\qquad (1)}

Charlesov zákon ukazuje, že objem je úmerný absolútnej teplote:

V T = k 2 ( 2 ) {\displaystyle {\frac {V}{T}}=k_{2}\qquad (2)} {\displaystyle {\frac {V}{T}}=k_{2}\qquad (2)}

Gay-Lussacov zákon hovorí, že tlak je úmerný absolútnej teplote:

P = k 3 T ( 3 ) {\displaystyle P=k_{3}T\qquad (3)} {\displaystyle P=k_{3}T\qquad (3)}

kde P je tlak, V objem a T absolútna teplota ideálneho plynu.

Kombináciou (1) a jednej z (2) alebo (3) získame novú rovnicu s P, V a T. Ak rovnicu (1) vydelíme teplotou a rovnicu (2) vynásobíme tlakom, dostaneme:

P V T = k 1 ( T ) T {\displaystyle {\frac {PV}{T}}={\frac {k_{1}(T)}{T}}} {\displaystyle {\frac {PV}{T}}={\frac {k_{1}(T)}{T}}}

P V T = k 2 ( P ) P {\displaystyle {\frac {PV}{T}}=k_{2}(P)P}{\displaystyle {\frac {PV}{T}}=k_{2}(P)P} .

Keďže ľavá strana oboch rovníc je rovnaká, dostaneme

k 1 ( T ) T = k 2 ( P ) P {\displaystyle {\frac {k_{1}(T)}{T}}=k_{2}(P)P}{\displaystyle {\frac {k_{1}(T)}{T}}=k_{2}(P)P} ,

čo znamená, že

P V T = konštanta {\displaystyle {\frac {PV}{T}}={\textrm {konštanta}}} {\displaystyle {\frac {PV}{T}}={\textrm {constant}}}.

Dosadením Avogadrovho zákona získame rovnicu ideálneho plynu.

Fyzikálne odvodenie

Odvodenie kombinovaného plynového zákona len pomocou elementárnej algebry môže obsahovať prekvapenia. Napríklad, ak vychádzame z troch empirických zákonov

P = k V T {\displaystyle P=k_{V}\,T\,\! } {\displaystyle P=k_{V}\,T\,\!}          (1) Gay-Lussacov zákon, objem sa predpokladá konštantný

V = k P T {\displaystyle V=k_{P}T\,\! } {\displaystyle V=k_{P}T\,\!}          (2) Charlesov zákon, tlak sa považuje za konštantný

P V = k T {\displaystyle PV=k_{T}\,\! } {\displaystyle PV=k_{T}\,\!}          (3) Boyleov zákon, teplota sa predpokladá konštantná

kde kV, kP a kT sú konštanty, môžeme tieto tri konštanty vynásobiť a získať

P V P V = k V T k P T k T {\displaystyle PVPV=k_{V}Tk_{P}Tk_{T}\,\! } {\displaystyle PVPV=k_{V}Tk_{P}Tk_{T}\,\!}

Zdá sa, že odmocnina z obidvoch strán a delenie číslom T vedie k požadovanému výsledku

P V T = k P k V k T {\displaystyle {\frac {PV}{T}}={\sqrt {k_{P}k_{V}k_{T}}},\! } {\displaystyle {\frac {PV}{T}}={\sqrt {k_{P}k_{V}k_{T}}}\,\!}

Ak však pred použitím vyššie uvedeného postupu iba preusporiadame členy v Boylovom zákone, kT = PV, potom po zrušení a preusporiadaní dostaneme

k T k V k P = T 2 {\displaystyle {\frac {k_{T}}{k_{V}k_{P}}}=T^{2}\,\! } {\displaystyle {\frac {k_{T}}{k_{V}k_{P}}}=T^{2}\,\!}

čo nie je veľmi užitočné, ak nie zavádzajúce.

Fyzikálne odvodenie, ktoré je dlhšie, ale spoľahlivejšie, začína uvedomením si, že konštantný objemový parameter v Gay-Lussacovom zákone sa bude meniť so zmenou objemu systému. Pri konštantnom objeme V1 môže zákon vyzerať P = k1T, zatiaľ čo pri konštantnom objeme V2 môže vyzerať P = k2T. Ak tento "premenný konštantný objem" označíme kV(V), prepíšeme zákon ako

P = k V ( V ) T {\displaystyle P=k_{V}(V)\,T\,\! }           {\displaystyle P=k_{V}(V)\,T\,\!}(4)

Rovnaká úvaha platí aj pre konštantu v Charlesovom zákone, ktorú možno prepísať

V = k P ( P ) T {\displaystyle V=k_{P}(P)\,T\,\! }           {\displaystyle V=k_{P}(P)\,T\,\!}(5)

Pri hľadaní kV(V) by sa nemalo bezmyšlienkovite vylúčiť T medzi (4) a (5), pretože P je v prvom prípade premenlivé, zatiaľ čo v druhom sa predpokladá, že je konštantné. Skôr by sa malo najprv určiť, v akom zmysle sú tieto rovnice navzájom kompatibilné. Aby sme to pochopili, pripomeňme si, že ľubovoľné dve premenné určujú tretiu. Ak zvolíme P a V ako nezávislé, predstavíme si hodnoty T, ktoré tvoria plochu nad rovinou PV. Určité V0 a P0 definujú T0, bod na tejto ploche. Dosadením týchto hodnôt do (4) a (5) a usporiadaním dostaneme

T 0 = P 0 k V ( V 0 ) a T 0 = V 0 k P ( P 0 ) {\displaystyle T_{0}={\frac {P_{0}}{k_{V}(V_{0})}}\quad a\quad T_{0}={\frac {V_{0}}{k_{P}(P_{0})}}} {\displaystyle T_{0}={\frac {P_{0}}{k_{V}(V_{0})}}\quad and\quad T_{0}={\frac {V_{0}}{k_{P}(P_{0})}}}

Keďže obidva tieto výrazy opisujú dianie v tom istom bode na povrchu, oba číselné výrazy sa dajú porovnať a usporiadať

k V ( V 0 ) k P ( P 0 ) = P 0 V 0 {\displaystyle {\frac {k_{V}(V_{0})}{k_{P}(P_{0})}}={\frac {P_{0}}{V_{0}}}},\! }           {\displaystyle {\frac {k_{V}(V_{0})}{k_{P}(P_{0})}}={\frac {P_{0}}{V_{0}}}\,\!}(6)

Všimnite si, že 1/kV(V0) a 1/kP(P0) sú sklony ortogonálnych priamok rovnobežných s osou P/V a prechádzajúcich týmto bodom na povrchu nad rovinou PV. Pomer sklonov týchto dvoch priamok závisí len od hodnoty P0/V0 v danom bode.

Všimnite si, že funkčný tvar (6) nezávisí od konkrétneho zvoleného bodu. Rovnaký vzorec by vznikol pre akúkoľvek inú kombináciu hodnôt P a V. Preto je možné zapísať

k V ( V ) k P ( P ) = P V P , V {\displaystyle {\frac {k_{V}(V)}{k_{P}(P)}}={\frac {P}{V}}\quad \forall P,\forall V}           {\displaystyle {\frac {k_{V}(V)}{k_{P}(P)}}={\frac {P}{V}}\quad \forall P,\forall V}(7)

To znamená, že každý bod na ploche má vlastnú dvojicu ortogonálnych priamok, ktoré ním prechádzajú, pričom pomer ich sklonov závisí len od tohto bodu. Zatiaľ čo (6) je vzťah medzi konkrétnymi sklonmi a hodnotami premenných, (7) je vzťah medzi funkciami sklonu a premennými funkcie. Platí pre ľubovoľný bod na ploche, t. j. pre všetky kombinácie hodnôt P a V. Ak chcete túto rovnicu vyriešiť pre funkciu kV(V), najprv oddeľte premenné, V na ľavej strane a P na pravej strane.

V k V ( V ) = P k P ( P ) {\displaystyle V\,k_{V}(V)=P\,k_{P}(P)} {\displaystyle V\,k_{V}(V)=P\,k_{P}(P)}

Vyberte si ľubovoľný tlak P1. Pravá strana sa vyhodnotí na nejakú ľubovoľnú hodnotu, nazvime ju karb.

V k V ( V ) = k arb {\displaystyle V\,k_{V}(V)=k_{\text{arb}}\,\! }           {\displaystyle V\,k_{V}(V)=k_{\text{arb}}\,\!}(8)

Táto konkrétna rovnica musí teraz platiť nielen pre jednu hodnotu V, ale pre všetky hodnoty V. Jediná definícia kV(V), ktorá to zaručuje pre všetky V a ľubovoľné karb, je

k V ( V ) = k arb V {\displaystyle k_{V}(V)={\frac {k_{\text{arb}}}{V}}} {\displaystyle k_{V}(V)={\frac {k_{\text{arb}}}{V}}}(9)

čo možno overiť substitúciou v (8).

Napokon, dosadením (9) do Gay-Lussacovho zákona (4) a usporiadaním dostaneme kombinovaný plynový zákon

P V T = k arb {\displaystyle {\frac {PV}{T}}=k_{\text{arb}}\,\! } {\displaystyle {\frac {PV}{T}}=k_{\text{arb}}\,\!}

Všimnite si, že hoci pri tomto odvodení nebol použitý Boylov zákon, z výsledku sa dá ľahko odvodiť. Vo všeobecnosti pri tomto type odvodenia stačí použiť ľubovoľné dva z troch východiskových zákonov - všetky východiskové dvojice vedú k rovnakému kombinovanému plynovému zákonu.

Aplikácie

Kombinovaný plynový zákon možno použiť na vysvetlenie mechaniky, v ktorej pôsobí tlak, teplota a objem. Napríklad: klimatizačné zariadenia, chladničky a tvorba oblakov a tiež sa používa v mechanike kvapalín a termodynamike.

Súvisiace stránky

  • Daltonov zákon

Otázky a odpovede

Otázka: Čo je to zákon o kombinovanom plyne?


Odpoveď: Kombinovaný plynový zákon je vzorec o ideálnych plynoch, ktorý ukazuje, ako spolu súvisia tri premenné (tlak, objem a teplota).

Otázka: Aké tri zákony tvoria kombinovaný plynový zákon?


Odpoveď: Tri zákony, ktoré tvoria kombinovaný zákon plynu, sú Charlesov zákon, Boylov zákon a Gay-Lussacov zákon.

Otázka: Čo hovorí Charlesov zákon?


Odpoveď: Charlesov zákon hovorí, že objem a teplota sú navzájom priamo úmerné, ak tlak zostáva rovnaký.

Otázka: Čo hovorí Boyleov zákon?


A: Boyleov zákon hovorí, že tlak a objem sú navzájom nepriamo úmerné pri rovnakej teplote.

Otázka: Čo hovorí Gay-Lussacov zákon?


A: Gay-Lussacov zákon hovorí, že teplota a tlak sú priamo úmerné, ak objem zostáva rovnaký.

Otázka: Ako súvisí Avogadrov zákon s kombinovaným plynovým zákonom?


Odpoveď: Keď sa Avogadrov zákon pridá ku kombinovanému plynovému zákonu, vznikne tzv. zákon ideálneho plynu.

AlegsaOnline.com - 2020 / 2023 - License CC3